当前位置:高考知识网 > 考试辅导 > 正文

关于中考数学压轴题附答案

更新时间:2023-08-14 06:48:20 高考知识网 www.xjdkctz.com

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。下面是小编收集整理的2017年中考数学压轴题附答案,欢迎阅读参考!~

2017年中考数学压轴题附答案

训练目标

熟悉题型结构,辨识题目类型,调用解题方法;

书写框架明晰,踩点得分(完整、快速、简洁)。

题型结构及解题方法

压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

考查要点常考类型举例题型特征解题方法

问题背景研究求坐标或函数解析式,求角度或线段长已知点坐标、解析式或几何图形的部分信息研究坐标、解析式,研究边、角,特殊图形。

模型套路调用求面积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段;

利用动点路程表达线段长;

设计方案表达关系式。

坐标系下,所求关系式和坐标相关利用坐标及横平竖直线段长;

分类:根据线段表达不同分类;

设计方案表达面积或周长。

求线段和(差)的最值有定点(线)、不变量或不变关系利用几何模型、几何定理求解,如两点之间线段最短、垂线段最短、三角形三边关系等。

套路整合及分类讨论点的存在性点的存在满足某种关系,如满足面积比为9:10抓定量,找特征;

确定分类;.

根据几何特征或函数特征建等式。

图形的存在性特殊三角形、特殊四边形的存在性分析动点、定点或不变关系(如平行);

根据特殊图形的判定、性质,确定分类;

根据几何特征或函数特征建等式。

三角形相似、全等的存在性找定点,分析目标三角形边角关系;

根据判定、对应关系确定分类;

根据几何特征建等式求解。

答题规范动作

试卷上探索思路、在演草纸上演草。

合理规划答题卡的答题区域:两栏书写,先左后右。

作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。

作答要求:框架明晰,结论突出,过程简洁。

23题作答更加注重结论,不同类型的作答要点:

几何推理环节,要突出几何特征及数量关系表达,简化证明过程;

面积问题,要突出面积表达的方案和结论;

几何最值问题,直接确定最值存在状态,再进行求解;

存在性问题,要明确分类,突出总结。

20分钟内完成。

实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称:

中考数学难点突破

1、图形运动产生的面积问题

2、存在性问题

3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)

4、中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题

知识点睛

研究_基本_图形

分析运动状态:

①由起点、终点确定t的范围;

②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

分段画图,选择适当方法表达面积.

二、精讲精练

已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

1题图2题图

如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=____________;AC=_____________;

(2)若,求x.

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q'恰好落在AB上?

(2)求S与t的函数关系式,并写出t的取值范围.

(3)S能否为?若能,求出此时t的值;

若不能,请说明理由.

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

(1)当t=_____s时,点P与点Q重合;

(2)当t=_____s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,

求S与t之间的函数关系式.

如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.

(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

二、二次函数中的存在性问题

一、知识点睛

解决“二次函数中存在性问题”的基本步骤:

①画图分析.研究确定图形,先画图解决其中一种情形.

②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

二、精讲精练

如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

(2)若点M是直线AB上方抛物线上的一个动点,

作MN⊥x轴于点N.是否存在点M,使△AMN

与△ACD相似?若存在,求出点M的坐标;

若不存在,说明理由.

已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

三、二次函数与几何综合

一、知识点睛

“二次函数与几何综合”思考流程:

整合信息时,下面两点可为我们提供便利:

①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

二、精讲精练

如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?

若存在,求出点M的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,点F在抛物线上,

且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.

已知,抛物线经过A(-1,0),C(2,)两点,

与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

并直接写出自变量x的取值范围.

已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A),

①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

②如图2,当∠PCB=∠BCA时,求直线CP的解析式.

四、中考数学压轴题专项训练

1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

△OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O,A,B三点的抛物线解析式.

(2)求S与t的函数关系式.

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线的解析式及点D的坐标.

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

(3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

(1)求抛物线的解析式;

(2)点K为线段AB上一动点,过点K作x轴的垂线,交直

线CD于点H,交抛物线于点G,求线段HG长度的最大值;

(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

N为顶点的四边形是平行四边形,求点N的坐标.

5.(11分)如图,在平面直角坐标系中,直线与

抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

(1)求抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

直接写出对应的点P的坐标.

6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

(1,0),直线AB交抛物线C1于另一点C.

(1)求点C的坐标;

(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.